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What is an Exoplanet?

NASA/JPL-Caltech



What is an Exoplanet?

Jupiter & Major Moons
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TwO PLANET FORMATION SCENARIOS

Planet Formation
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Accretion model

Dust disk

Orbiting dust grains accrete
into "planetesimals" through
nongravitational forces.

Planetesimals grow, moving in
near-coplanar orbits, to form
"planetary embryos."

Gas-giant planets accrete gas
envelopes before disk gas
disappears.

Gas-giant planets scatter or

accrete remaining planetesimals

and embryos.

Gas-collapse model

A protoplanetary disk of gas
and dust forms around a
young star.

abion
MEXUS;

Gravitational disk instabilities
form a clump of gas that be-
comes a self-gravitating planet.

P Gas giant

Dust grains coagulate and
sediment to the center of the
protoplanet, forming a core.

The planet sweeps out a wide
gap as it continues to feed on
gas in the disk.

NASA/ESA
and A. Feild



A. Isella/ALMA (ESO/NAOJ/NRAO)/Rice University.
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Theory to Observations



Observing Basics

Small mirror
reflects light
and image into
eyepiece

Large mirror
gathers and
reflects light

NASA/JPL-Caltech



Observing Basics

Radio Window Optical
Window
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Observing Basics

Sunlight spectrum in space as a function of wavelength
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How Do We Find Exoplanets?

* Radial Velocity

* Transits

* Imaging AR °
* Microlensing P

* Astrometry

e Others (Timing/Eclipse
Variations, Brightness
Modulation)



Radial Velocity

7y
~~
g
) <
Q
(<)
o
wn

* Indirect detection, measure the
spectrum of a star, look for

Doppler shifting | R
. . . — [ .
 Amplitude of signal gives mass
of planet

* First really successful method

* Sensitive to massive planets, but
many surveys have long

baselines 2019 Nobel

Prize in Physics!

Mayor and
Queloz (1995)




Transits

* Indirect detection, measure the
brightness of a host star and look
for variations

* Short, periodic signals can indicate
exoplanets

Need to rule out false positives

e Often combined with other
methods

* Precision photometry can find very
small planets

* Requires very specific orbital
orientations

[--. TIC 158588995 |
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(NASA GSFC)




Imaging

* Direct observations!

» Take a picture of space and collect
light coming from a planet

e Often need to suppress the bright
host star

 Large ground-based coronagraphs
main drivers of direct imaging

* Space telescopes have some
capability, JWST will do this!

2009-07-31

20 au

J. Wang, Caltech



Microlensing

* Transient method
e Can’t revisit planets

* Can get some size
information on planet

* Good for large,
shallow surveys

* Future Roman Space
Telescope

Gravitational Microlensing

The Earth, a close star, and a brighter, more distant star,

happen to come into alignment for a few weeks or months

Light bent by gravity from distant star

closer star,

=

/!
Einstein ring *

closer star

radius of about 2 AU and

The Einstein ring has a

is the width of the
angular width of the
distant star

Brightness

Gravity from the closer star acts as a lens and
magpnifies the distant star over the course of the transit.
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The change in brightness can be plotted on a graph

# \,
/ %

Time

distant star

If there is a planet orbiting the closer star, and it happens
to align with the Einstein ring, its mass will enhance the
lens effect and increase the magnification for a short time

Brightness

The planet causes a small blip on the graph
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Astrometry Astrometry

e “Oldest” discovery method
e Optical counterpart to RVs :

* Indirect method, but gives : > /
similar parameters (orbits, N ,
masses) to other detections

* GAIA mission will discover
thousands of astrometry
planets in the next few
years

Position in the sky over time

ESA



Discovery Process



NASA/MIT/TESS and Ethan Kruse (USRA)



Current Status

Confirmed Exoplanets - All Hosts

* Where does this leave us

now?
 We know of >4300 L
exoplanets g
¢ What do we do Wlth a” this E b XY « Radial Velocity
data? i B
) *  Microlensing

Transit Timing Variations
Other
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Orbit Semimajor Axis (AU)




Galactic Longitude

"~ Year 1993
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Transit Radial Velocity ,
Imaging Microlensing Pulsar Credit : V. Parmentier/NASA/R. Hurt



Planet Characterization



Planet Characterization

 We can combine methods like
Transits/RVs to understand more
about a planet

e Radius + Mass -> density -> bulk
composition

 Useful for interpreting other m p
observations e

H,/He




Planet Characterization

* Combining RV/Direct Imaging
can do things that transits + RVs
can’t

* Orbital architecture shows true
mass of planet

e Luminosity/spectroscopy of
planet can help distinguish
formation mechanisms
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(ESA, Plato Mission)

Planet Characterization

* Transit spectroscopy shows absorbing
species in atmosphere

e Often hard to interpret without good
stellar spectra, planet atmosphere

models

* Spectroscopy also possible from direct
imaging, but needs specific targets | R best (7= 250K, logd) =40

Drift-Phoenix best fit (T=1370K, log(g) =4.0 ¢
@ GRAVITY K-band spectrum
Q [}
° o

Q
] 2]
B ) (e} o tb 0%@
o) ,/—"":E B 3339%
I e oﬁ:tmc? @% %000
o

%oo

fum)

3 W/m?

a
|
o
—

*®
=
w

Wavelength (um)

Nowak et al. 2020



Transit spectroscopy probes
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Observatories and Instruments!

Keck Observatory
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What We're Doing



Spectral Lightcurves

What am | doing, anyway?

Raw 1.1um
Raw 1.3um
Raw 1.6um

White Lightcurves
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e Detrended White




What am | doing, anyway?

* Lightcurve modeling
e “true” transit model
* “true” systematics model

* Fit components from Kreidberg+
2014, need to fit for every spectral
band

« MCMC sampling over (possibly very) large
hierarchical models -> want speedy
sampling

* exoplanet —improved sampling
performance with Hamiltonian Monte-
Carlo, “new” to astrophysics

@ exoplanet (Foreman-Mackey+2019)
docs.exoplanet.codes

Individual Systematics

Time

Combined Systematics

e Observed Data
-== Combined Systematics/LC




observed
ramp
slope
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GJ 1214 b — Flat Spectra, Thick Clouds
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Next steps

* Continue validating code
* Work on spectral lightcurve extraction
* HST IR spectra of other new exoplanets
* NASA IRTF infrared spectra next month!
* JWST? Who knows!

* Helium escape, atmospheric erosion? ->
tracing EUV flux from host star

* General interest—H20 in temperate
planet atmospheres -> “habitable” zone

* Find good spectral retrieval codes to
interpret results
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DC/ 13C

M-Dwarfs (Crossfield+ 2019): []
Young Stellar Objects: [
Kobayashi(2011) GCE Model:
Proposed GCE Correction:

Normalized Flux Intensity

Normalized Flux Intensity

Abundance Plot: Solar Twin 4: 13CO

Solar Twin 4
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Weighing a Planet....

Measuring the mass of Wolf 503b
reveals a planet over 6 times the
mass of Earth makingita

sub-Neptune that may be 50%
water! | e
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Future Efforts



Ground-Based (mid-late 2020s, early 2030s
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Extremely Large Telescope KT ) i Meter Telescope Gran Telescopio Subaru
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Questions!



